On Lipschitzian Properties of Implicit Multifunctions
نویسندگان
چکیده
This paper is devoted to the development of new sufficient conditions for the calmness and the Aubin property of implicit multifunctions. As the basic tool we employ the directional limiting coderivative which, together with the graphical derivative, enables a fine analysis of the local behavior of the investigated multifunction along relevant directions. For verification of the calmness property, in addition, a new condition has been discovered which parallels the missing implicit function paradigm and permits us to replace the original multifunction by a substantially simpler one. Moreover, as an auxiliary tool, a handy formula for the computation of the directional limiting coderivative of the normal-cone map with a polyhedral set has been derived which perfectly matches the framework of [A. L. Dontchev and R. T. Rockafellar, SIAM J. Optim., 6 (1996), pp. 1087–1105]. All important statements are illustrated by examples.
منابع مشابه
Order - Lipschitzian properties of multifunctions with applications to stability of efficient points
We define order-Lipschitzian properties of multifunctions and we investigate local upper order-lipschitzness and ordercalmness of efficient points of a set depending upon a parameter.
متن کاملComplete Characterization of Openness, Metric Regularity, and Lipschitzian Properties of Multifunctions
We consider some basic properties of nonsmooth and set-valued mappings (multifunctions) connected with open and inverse mapping principles, distance estimates to the level sets (metric regularity), and a locally Lipschitzian behavior. These properties have many important applications to various problems in nonlinear analysis, optimization, control theory, etc., especially for studying sensitivi...
متن کاملImplicit Multifunction Theorems
We prove a general implicit function theorem for multifunctions with a metric estimate on the implicit multifunction and a characterization of its coderivative. Traditional open covering theorems, stability results, and sufficient conditions for a multifunction to be metrically regular or pseudo-Lipschitzian can be deduced from this implicit function theorem. We prove this implicit multifunctio...
متن کاملOn the Lipschitzian properties of polyhedral multifunctions
In this paper, we show that for a polyhedral multifunction F : R n ! R m with convex range, the inverse function F ?1 is locally lower Lipschitzian at every point of the range of F (equivalently Lipschitzian on the range of F) if and only if the function F is open. As a consequence, we show that for a piecewise aane function f : R n ! R n , f is surjective and f ?1 is Lipschitzian if and only i...
متن کاملImplicit multifunction theorems in complete metric spaces
In this paper, we establish some new characterizations of the metric regularity of implicit multifunctions in complete metric spaces by using the lower semicontinuous envelopes of the distance functions for set-valued mappings. Through these new characterizations it is possible to investigate implicit multifunction theorems based on coderivatives and on contingent derivatives as well as the per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 26 شماره
صفحات -
تاریخ انتشار 2016