On Lipschitzian Properties of Implicit Multifunctions

نویسندگان

  • Helmut Gfrerer
  • Jirí V. Outrata
چکیده

This paper is devoted to the development of new sufficient conditions for the calmness and the Aubin property of implicit multifunctions. As the basic tool we employ the directional limiting coderivative which, together with the graphical derivative, enables a fine analysis of the local behavior of the investigated multifunction along relevant directions. For verification of the calmness property, in addition, a new condition has been discovered which parallels the missing implicit function paradigm and permits us to replace the original multifunction by a substantially simpler one. Moreover, as an auxiliary tool, a handy formula for the computation of the directional limiting coderivative of the normal-cone map with a polyhedral set has been derived which perfectly matches the framework of [A. L. Dontchev and R. T. Rockafellar, SIAM J. Optim., 6 (1996), pp. 1087–1105]. All important statements are illustrated by examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Order - Lipschitzian properties of multifunctions with applications to stability of efficient points

We define order-Lipschitzian properties of multifunctions and we investigate local upper order-lipschitzness and ordercalmness of efficient points of a set depending upon a parameter.

متن کامل

Complete Characterization of Openness, Metric Regularity, and Lipschitzian Properties of Multifunctions

We consider some basic properties of nonsmooth and set-valued mappings (multifunctions) connected with open and inverse mapping principles, distance estimates to the level sets (metric regularity), and a locally Lipschitzian behavior. These properties have many important applications to various problems in nonlinear analysis, optimization, control theory, etc., especially for studying sensitivi...

متن کامل

Implicit Multifunction Theorems

We prove a general implicit function theorem for multifunctions with a metric estimate on the implicit multifunction and a characterization of its coderivative. Traditional open covering theorems, stability results, and sufficient conditions for a multifunction to be metrically regular or pseudo-Lipschitzian can be deduced from this implicit function theorem. We prove this implicit multifunctio...

متن کامل

On the Lipschitzian properties of polyhedral multifunctions

In this paper, we show that for a polyhedral multifunction F : R n ! R m with convex range, the inverse function F ?1 is locally lower Lipschitzian at every point of the range of F (equivalently Lipschitzian on the range of F) if and only if the function F is open. As a consequence, we show that for a piecewise aane function f : R n ! R n , f is surjective and f ?1 is Lipschitzian if and only i...

متن کامل

Implicit multifunction theorems in complete metric spaces

In this paper, we establish some new characterizations of the metric regularity of implicit multifunctions in complete metric spaces by using the lower semicontinuous envelopes of the distance functions for set-valued mappings. Through these new characterizations it is possible to investigate implicit multifunction theorems based on coderivatives and on contingent derivatives as well as the per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016